1、焊条电弧焊:
原理——用手工操作焊条进行焊接的电弧焊方法。利用焊条与焊件版之间建立起来的权稳定燃烧的电弧,使焊条和焊件熔化,从而获得牢固的焊接接头。属气-渣联合保护。
主要特点——操作灵活;待焊接头装配要求低;可焊金属材料广;焊接生产率低;焊缝质量依赖性强(依赖于焊工的操作技能及现场发挥)。
应用——广泛用于造船、锅炉及压力容器、机械制造、建筑结构、化工设备等制造维修行业中。适用于(上述行业中)各种金属材料、各种厚度、各种结构形状的焊接。
铸铁常用的补焊方法有以下几种,纯现场铸铁焊接经验总结;
1、从焊接后的回使用强度上来说最好的也是最常答用的就是手工电弧焊,配套的焊条用普通的J506或者Z308,重要的铸铁对于抗裂性能要求高一些的就用进口WEWELDING777铸铁焊条。
2、铸铁铸造缺陷,特别是灰口铸铁铸造缺陷的焊接用WEWELDING777TIG的氩弧焊丝焊接, 提醒一下氩弧焊接铸铁终究是不如手工电弧焊来的效果好,主要是指抗裂性能和焊接后的强度,一把氩弧用于修复微小气孔或者小尺寸的磨损修复。
3、冷焊机,一般火花机来修复铸造的缺陷,优点是温度不高,缺点是强度要差一些,所以铸造针眼缺陷修复还是可以的。
4、气体保护焊接铸铁是不推荐的,这种的焊接效果强度不如手工电弧焊,小缺陷不如氩弧或者冷焊机。
常用焊接方法及特点
--------------------------------------------------------------------------------
一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点?
钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。
根据钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。
(1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。
(2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。
钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采用搭接接头和套件镶接,以弥补钎焊强度的不足。
二、电弧焊的分类有哪些,有什么优点?
利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体保护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体保护焊具有保护效果好、电弧稳定、热量集中等特点。
三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点?
(1)焊接接头由焊缝金属和热影响区组成。
1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。
2)热影响区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。
(2)低碳钢的热影响区分为熔合区、过热区、正火区和部分相变区。
1)熔合区 位于焊缝与基本金属之间,部分金属焙化部分未熔,也称半熔化区。加热温度约为1 490~1 530°C,此区成分及组织极不均匀,强度下降,塑性很差,是产生裂纹及局部脆性破坏的发源地。
2)过热区 紧靠着熔合区,加热温度约为1 100~1 490°C。由于温度大大超过Ac3,奥氏体晶粒急剧长大,形成过热组织,使塑性大大降低,冲击韧性值下降25%~75%左右。
3)正火区 加热温度约为850~1 100°C,属于正常的正火加热温度范围。冷却后得到均匀细小的铁素体和珠光体组织,其力学性能优于母材。
4)部分相变区 加热温度约为727~850°C。只有部分组织发生转变,冷却后组织不均匀,力学性能较差。
四、什么是电阻焊?电阻焊分为哪几种类型、分别用于何种场合?
电阻焊是利用电流通过工件及焊接接触面间所产生的电阻热,将焊件加热至塑性或局部熔化状态,再施加压力形成焊接接头的焊接方法。
电阻焊分为点焊、缝焊和对焊3种形式。
(1)点焊:将焊件压紧在两个柱状电极之间,通电加热,使焊件在接触处熔化形成熔核,然后断电,并在压力下凝固结晶,形成组织致密的焊点。
点焊适用于焊接4 mm以下的薄板(搭接)和钢筋,广泛用于汽车、飞机、电子、仪表和日常生活用品的生产。
(2)缝焊:缝焊与点焊相似,所不同的是用旋转的盘状电极代替柱状电极。叠合的工件在圆盘间受压通电,并随圆盘的转动而送进,形成连续焊缝。
缝焊适宜于焊接厚度在3 mm以下的薄板搭接,主要应用于生产密封性容器和管道等。
(3)对焊:根据焊接工艺过程不同,对焊可分为电阻对焊和闪光对焊。
1)电阻对焊 焊接过程是先施加顶锻压力(10~15 MPa),使工件接头紧密接触,通电加热至塑性状态,然后施加顶锻压力(30~50 MPa),同时断电,使焊件接触处在压力下产生塑性变形而焊合。
电阻对焊操作简便,接头外形光滑,但对焊件端面加工和清理要求较高,否则会造成接触面加热不均匀,产生氧化物夹杂、焊不透等缺陷,影响焊接质量。因此,电阻对焊一般只用于焊接直径小于20 mm、截面简单和受力不大的工件。
2)闪光对焊 焊接过程是先通电,再使两焊件轻微接触,由于焊件表面不平,使接触点通过的电流密度很大,金属迅速熔化、气化、爆破,飞溅出火花,造成闪光现象。继续移动焊件,产生新的接触点,闪光现象不断发生,待两焊件端面全部熔化时,迅速加压,随即断电并继续加压,使焊件焊合。
闪光对焊的接头质量好,对接头表面的焊前清理要求不高。常用于焊接受力较大的重要工件。闪光对焊不仅能焊接同种金属,也能焊接铝钢、铝铜等异种金属,可以焊接0.01 mm的金属丝,也可以焊接直径500 mm的管子及截面为20 000 mm2的板材。
五、激光焊的基本原理是什么?有何特点及用途?
激光焊利用聚焦的激光束作为能源轰击工件所产生的热量进行焊接。
激光焊具有如下特点:
1)激光束能量密度大,加热过程极短,焊点小,热影响区窄,焊接变形小,焊件尺寸精度高;
2)可以焊接常规焊接方法难以焊接的材料,如焊接钨、钼、钽、锆等难熔金属;
3)可以在空气中焊接有色金属,而不需外加保护气体;
4)激光焊设备较复杂,成本高。
激光焊可以焊接低合金高强度钢、不锈钢及铜、镍、钛合金等;异种金属以及非金属材料(如陶瓷、有机玻璃等);目前主要用于电子仪表、航空、航天、原子核反应堆等领域。
六、电子束焊的基本原理是什么?有何特点及用途?
电子束焊利用在真空中利用聚焦的高速电子束轰击焊接表面,使之瞬间熔化并形成焊接接头。
电子束焊具有以下特点:
1)能量密度大,电子穿透力强;
2)焊接速度快,热影响取消,焊接变形小;
3)真空保护好,焊缝质量高,特别适用于活波金属的焊接。
电子束焊用于焊接低合金钢、有色金属、难熔金属、复合材料、异种材料等,薄板、厚板均可。特别适用于焊接厚件及要求变形很小的焊件、真空中使用器件、精密微型器件等。
铸铁焊接按照楼上的朋友的回复已经非常详细了,常见的就是热焊和冷焊法,但是我补充一下就是热焊和冷焊铸铁的应用。
一般热焊法适合有一定的热焊条件的工况使用,比如小的零件,焊接人员就可以通过简单的氧气乙炔加热以后,埋藏到石灰堆里面做保温,或者大件用氧气乙炔无法加热就用电炉,时效炉等加热的大型设备,这种一般适合有条件的比如铸造厂,热处理厂,常见的就是将工件预热到500-600度的温度,采用J506焊条或者Z308的铸铁焊条以最小的线能量焊接,焊接后保温缓冷。
一般冷焊适合复杂的设备事故现场,或者不具备热
焊条件的工况使用,比如工业铸铁设备的裂纹,或者操作事故导致的捣缸,断裂等,还有包括加工或者长期工作的磨损等,这种不便于拆装,不便于加热,更不可能将设备或者工件放置于大型的炉子中,所以就采用不用于热的冷焊操作方法,不过冷焊并不是常规的脉冲冷焊机那种焊接,而是真正的手工电弧熔焊,适合冷焊工艺而抗裂表现在现场抢修特别棒的WEWELDING777特种铸铁焊条焊接办法焊接,就是在焊接过程中时刻保持铸铁的母体是常温或者温度不高的状态,可以在焊接过程中,设计合理的坡口,结构上小电流小规范焊接,也可以达到母体的自身强度,或者达到焊接不裂的效果,这个就是优越于热焊的也是目前现场比较零活的一种焊接办法。
常用的焊接方式如下:
1、直线形运条法。采用这种运条法焊接时,焊条不做横向摆动,沿焊接方向做直线移动。它常用于Ⅰ形坡口的对接平焊,多层焊的第一层焊或多层多道焊。
2、直线往复运条法。采用这种运条方法焊接时,焊条末端沿焊缝的纵向做来回摆动。它的特点是焊接速度快,焊缝窄,散热快。它适用于薄板和接头间隙较大的多层焊的第一层焊。
3、锯齿形运条法。采用这种运条方法焊接时,焊条末端做锯齿形连续摆动及向前移动,并在两边稍停片刻。摆动的目的是为了控制熔化金属的流动和得到必要的焊缝宽度,以获得较好的焊缝成形。
这种运条方法在生产中应用较广,多用于厚钢板的焊接,平焊、仰焊、立焊的对接接头和立焊的角接接头。
4、月牙形运条法。采用这种运条方法焊接时,焊条的末端沿着焊接方向做月牙形的左右摆动。摆动的速度要根据焊缝的位置、接头形式、焊缝宽度和焊接电流值来决定。同时需在接头两边停留片刻,这是为了使焊缝边缘有足够的熔深,防止咬边。
这种运条方法的特点是金属熔化良好,有较长的保温时间,气体容易析出,熔渣也易于浮到焊缝表面上来,焊缝质量较高,但焊出来的焊缝余温较高。这种运条方法的应用范围和锯齿形运条法基本相同。
5、三角形运条法。采用这种运条方法焊接时,焊条末端做连续三角形运动,并不断向前移动。按照摆动形式的不同,可分为斜三角形和正三角形两种,斜三角形运条法适用于焊接平焊和仰焊位置的T形接头焊缝和有坡口的横焊缝,其优点是能够借焊条的摆动来控制熔化金属,促使焊缝成形良好。
正三角形运条法只适用于开坡口的对接接头和T形接头焊缝的立焊,特点是能一次焊出较厚的焊缝断面,焊缝不易产生夹渣等缺陷,有利于提高生产效率。
6、圆圈形运条法。采用这种运条方法焊接时.焊条末端连续做正圆圈或斜圆圈形运动,并不断前移。正圆圈形运条法适用于焊接较厚焊件的平焊缝,其优点是熔池存在时间长,熔池金属温度高,有利于溶解在熔池中的氧、氮等气体的析出,便于熔渣上浮。
斜圆圈形运条法适用于平、仰位置T形接头焊缝和对接接头的横焊缝,其优点是利于控制熔化金属不受重力影响而产生下淌现象,有利于焊缝成形。
工件可以用各种同类或不同类的金属、非金属材料(塑 料、石墨、陶瓷回、玻璃等),也可以用答一种金属与一种非金属材料。金属的焊接在现代工业中具有广泛的应用,因此狭 义地讲,焊接通常就是指金属材料的焊接。
按照焊接过程中金属材料所处的状态不同,目前把焊接 方法分为以下三类:
(1) 熔焊焊接过程中,将焊件接头加热至熔化状态, 不加压力完成焊接的方法称为熔焊。常用的熔焊方法有电弧焊、气焊、电渣焊等。
(2) 压焊焊接过程中,必须对焊件施加压力(加热或 不加热),以完成焊接的方法称为压焊。常用的压焊方法有电阻焊(对焊、点焊、缝焊)、摩擦焊、旋转电弧焊、超声 波焊等。
(3) 钎焊焊接过程中,采用比母材熔点低的金属材料 作钎料,将焊件和钎料加热到高于钎料熔点、低于母材熔点的温度,利用液态钎料润湿母材,填充接头间隙并与母材相 互扩散实现连接焊件的方法称为钎焊。
常用的钎焊方法有火 焰钎焊、感应钎焊、炉中钎焊、盐浴钎焊和真空钎焊等。
检验方式符号、其他要求和说明等标在 尾部右侧
焊接代号
AW —— ARC WELDING——电弧焊
AHW —— atomic hydrogen welding——原子氢焊
BMAW —— bare metal arc welding——无保护金属丝电弧焊 CAW —— carbon arc welding——碳弧焊
CAW-G —— gas carbon arc welding——气保护碳弧焊
CAW-S —— shielded carbon arc welding——有保护碳弧焊 CAW-T —— twin carbon arc welding——双碳极间电弧焊 EGW —— electrogas welding——气电立焊
FCAW —— flux cored arc welding——药芯焊丝电弧焊
FCW-G —— gas-shielded flux cored arc welding——气保护 药芯焊丝电弧焊
FCW-S —— self-shielded flux cored arc welding—— 888真 人自保护药芯焊丝电弧焊
GMAW —— gas metal arc welding——熔化极气体保护电弧焊 GMAW-P —— pulsed arc——熔化极气体保护脉冲电弧焊
GMAW-S —— short circuiting arc——熔化极气体保护短路过 度电弧焊
GTAW —— gas tungsten arc welding——钨极气体保护电弧焊 GTAW-P —— pulsed arc——钨极气体保护脉冲电弧焊
MIAW —— magnetically impelled arc welding——磁推力电弧焊
PAW —— plasma arc welding——等离子弧焊
SMAW —— shielded metal arc welding——焊条电弧焊
SW —— stud arc welding——螺栓电弧焊
SAW —— submerged arc welding——埋弧焊
SAW-S —— series ——横列双丝埋弧焊
RW —— RWSISTANCE WELDING——电阻焊
FW —— flash welding——闪光焊
RW-PC —— pressure controlled resistance welding——压力 控制电阻焊
PW —— projection welding——凸焊
RSEW —— resistance seam welding——电阻缝焊
RSEW-HF —— high-frequency seam welding——高频电阻缝焊 RSEW-I —— inction seam welding——感应电阻缝焊
RSEW-MS —— mash seam welding——压平缝焊
RSW —— resistance spot welding——点焊
UW —— upset welding——电阻对焊
UW-HF —— high-frequency ——高频电阻对焊
UW-I —— inction ——感应电阻对焊
SSW —— SOLID STATE WELDING——固态焊
CEW —— co-extrusion welding——
CW —— cold welding——冷压焊
DFW —— diffusion welding——扩散焊
HIPW —— hot isostatic pressure diffusion welding——热 等静压扩散焊
EXW —— explosion welding——爆炸焊
FOW —— forge welding——锻焊
FRW —— friction welding——摩擦焊
FRW-DD —— direct drive friction welding——径向摩擦焊 FSW —— friction stir welding——搅拌摩擦焊
FRW-I —— inertia friction welding——惯性摩擦焊
HPW —— hot pressure welding——热压焊
ROW —— roll welding——热轧焊
USW —— ultrasonic welding——超声波焊
S —— SOLDERING ——软钎焊
DS —— dip soldering——浸沾钎焊
FS —— furnace soldering——炉中钎焊
IS —— inction soldering——感应钎焊
IRS —— infrared soldering——红外钎焊
INS —— iron soldering——烙铁钎焊
RS —— resistance soldering——电阻钎焊
TS —— torch soldering——火焰钎焊
UUS —— ultrasonic soldering——超声波钎焊
WS —— wave soldering——波峰钎焊
B —— BRAZING ——软钎焊
BB —— block brazing——块钎焊
DFB —— diffusion brazing——扩散焊
DB —— dip brazing——浸沾钎焊
EXB —— exothermic brazing——反应钎焊
FB —— furnace brazing——炉中钎焊
IB —— inction brazing——感应钎焊
IRB —— infrared brazing——红外钎焊
RB —— resistance brazing——电阻钎焊
TB —— torch brazing——火焰钎焊
TCAB —— twin carbon arc brazing——双碳弧钎焊 OFW —— OXYFUEL GAS WELDING——气焊
AAW —— air-acetylene welding——空气乙炔焊
OAW —— oxy-acetylene welding——氧乙炔焊
OHW —— oxy-hydrogen welding——氢氧焊
PGW —— pressure gas welding——气压焊
OTHER WELDING AND JOINING——其他焊接与连接方法 AB —— adhesive bonding——粘接
BW —— braze welding——钎接焊
ABW —— arc braze welding——电弧钎焊
CABW —— carbon arc braze welding——碳弧钎焊 EBBW —— electron beam braze welding——电子束钎焊
EXBW —— exothermic braze welding——热反应钎焊
FLB —— flow brazing——波峰钎焊
FLOW —— flow welding——波峰焊
LBBW —— laser beam braze welding——激光钎焊
EBW —— electron beam welding——电子束焊
EBW-HV —— high vacuum——高真空电子束焊
EBW-MV —— medium vacuum——中真空电子束焊
EBW-NV —— non vacuum——非真空电子束焊
ESW —— electroslag welding——电渣焊
ESW-CG —— consumable guide eletroslag welding——熔嘴电 渣焊
IW —— inction welding——感应焊
LBW —— laser beam welding——激光焊
PEW —— percussion welding——冲击电阻焊
TW —— thermit welding——热剂焊
THSP —— THERMAL SPRAYING——热喷涂
ASP —— arc spraying——电弧喷涂
FLSP —— flame spraying——火焰喷涂
FLSP-W —— wire flame spraying——丝材火焰喷涂
HVOF —— high velocity oxyfuel spraying——高速氧燃气喷 涂
PSP —— plasma spraying——等离子喷涂
VPSP-W —— vacuum plasma spraying——真空等离子喷涂 TC —— THERMAL CUTTING——热切割
OC —— OXYGEN CUTTING——气割
OC-F —— flux cutting——熔剂切割
OC-P —— metal powder cutting——金属熔剂切割
OFC —— oxyfuel gas cutting——氧燃气切割
CFC-A —— oxyacetylene cutting——氧乙炔切割
CFC-H —— oxyhydrogen cutting——氢氧切割
CFC-N —— oxynatural gas cutting——氧天然气切割
CFC-P —— oxypropanne cutting——氧丙酮切割
OAC —— oxygen arc cutting——氧气电弧切割
OG —— oxygen gouging——气刨
OLC —— oxygen lance cutting——氧矛切割
AC —— ARC CUTTING——电弧切割
CAC —— carbon arc cutting——碳弧切割
CAC-A —— air carbon arc cutting——空气碳弧切割
GMAC —— gas metal arc cutting——熔化极气体保护电弧切割 GTAC —— gas tungsten arc cutting——钨极气体保护电弧切 割
PAC —— plasma arc cutting——等离子弧切割
SMAC —— shielded metal arc cutting——焊条电弧切割 HIGH ENERGY BEAM CUTTING——高能束切割
6/7页
EBC —— electron beam cutting——电子束切割 LBC —— laser beam cutting——激光切割 LBC-A —— air ——空气激光切割
LBC-EV —— evaporative ——蒸气激光切割 LBC-IG —— inert gas——惰性气体激光切割 LBC-O —— oxygen ——氧气激光切割
车体总来成工位,由于侧立框架自及地板夹具的干涉,焊钳往往无法深入轮 罩处进行焊接,这时就需要有一种机构来代替人工焊接,而此处结构为空腔焊接,而不是常用的上下电极头相贴焊接,对于普通焊接,是靠上下电极头接触形成焊接回路,而在中空焊接时,因为电流通过相邻板流动,板和板之间接触的地方会全部分流,所以无效分流很大,如果改用普通交流电,很容易出现假焊。通过查阅相关资料,与电气、焊接方面的技术人员讨论,要解决以上问题,就要使焊接时的交流电流变为直流电流,从而保证焊接后的焊接强度,于是先设想采用逆变控制箱控制自动焊钳的方法,将焊接电流由交流电流变为直流电流,以下通过实验来验证焊接的可靠性
金属的焊接,按其工艺过程的特点分有熔焊,压焊和钎焊三大类.
熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。
在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。
压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。
各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。
钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。
①闪光对焊。适用于钢筋接长及预应力螺丝端杆的焊接。闪光对焊的原理如图327所示。
闪光对焊焊接时