基于bert的命名实体识别,pytorch实现,支持中文/英文【源学计划】

释放双眼,带上耳机,听听看~!

声明:为了帮助初学者快速入门和上手,开始源学计划,即通过源代码进行学习。该计划收取少量费用,提供有质量保证的源码,以及详细的使用说明。

第一个项目是基于bert的命名实体识别(name entity recognition),pytorch实现

基于bert与语料模型在多个NLP任务上取的不错效果,包括在命名实体识别(name entity recognition)上,在bert之前,主要采用的模型是Bi-lstm + CRF的方式,取得了不错效果。

Bert横空出世后,至今已经深度侵入到序列标注类任务,并取得最好效果。当然命名实体也不例外,取得了很好的效果。

本文最后提供pytorch-bert-ner,顾名思义, 基于bert的命名实体识别,pytorch实现,最重要的是支持中文或者中英文结合的ner任务。

pytorch-bert-ner算法实现忠于bert论文,无CRF层

可以让入门者或者不熟悉该领域又有实体识别任务的人,快速入门掌握。下面是该算法实现项目截图。感兴趣请加qq:2091395524获取源码。

基于bert的命名实体识别,pytorch实现,支持中文/英文【源学计划】

基于bert的命名实体识别,pytorch实现,支持中文/英文【源学计划】

 

给TA打赏
共{{data.count}}人
人已打赏
随笔日记

SVG学习之stroke-dasharray 和 stroke-dashoffset 详解

2020-11-9 5:26:33

随笔日记

中国汽车流通协会建议减免二手车增值税 或以3年为期

2020-11-9 5:26:35

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索